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Abstract
Previously limited solutions for multiple peg-in-hole assembly are hard to transfer into real industrial scenarios flexibly. To effectively address these issues,
this work designs a novel and more challenging multiple peg-in-hole assembly setup. Based on it, multiple modalities including vision, proprioception, and
force/torque are learned as compact representations to account for the complexity and uncertainties of the environment. Furthermore, RL is used in the
simulation to train the policy and the learned policy is transferred to the real world without extra exploration. Domain randomization and impedance control
are embedded into the policy to narrow the gap between simulation and reality. Finally, the evaluation results demonstrate that the proposed solution can
achieve successful multiple peg-in-hole assembly with the ability to generalize over different object shapes in the real world. Experimental video can be seen:
https://github.com/turbohiro/Assembly_MPA
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Figure 1: Overview of the proposed architecture. The left part represents policy training in the sim-
ulation environment, where domain randomization is used to sample the interaction of the assembly
task like color, lighting, camera, and robotic dynamics (left). During the training process, multi-
ple modalities including visual image, proprioception, and force/torque signals are all tokenized and
fused into a perceived transformer module. Each predicted policy π is embedded into an impedance
controller to execute torque commands to control the manipulator. Finally, the trained policy π∗ is
transferred to the real world without additional exploration (right).
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Figure 2: Overview of the visual representation module. 1) pre-
training: We first pre-train the feature encoder and decoder. After
that, the latent space Z∗ to recognize different object shapes is ob-
tained. 2) training: the decoder and most encoder layers are frozen,
and we train the encoder during the policy learning process.

(1) The predicted action at is defined as:

apost = spost+1 − spost , apos ∈ [∆x,∆y,∆z] (1)

aorit = sorit+1 ∗ inv(sorit ), aori ∈ [∆α,∆β,∆γ] (2)

agrit = sgrit+1 − sgrit , aori ∈ [0, 1] (3)

(2) After obtaining action at during each simulation step, the
impedance controller framework computes the necessary joint
torques to minimize the error between the desired and the cur-
rent pose according to specified impedance parameters and
torque limitations. Furthermore, SAC is used to train the
multi-modality impedance-based assembly policy.

where t is the timestamp of the current action, and spos, sori, and sgrpi represent the scalar value for position, orientation, and gripper.
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Figure 3: Ablation study for the proposed architecture .
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Figure 4: Comparison of the success rate of our task for different transition states from
Circle, Ellipse, and Square objects (left) Triangle object (right).

Table 1: The comparison of final success rate and assembly time.

Object shape Circle Ellipse Square Triangle* Triangle
Time (s) 15.0 18.0 18.0 24.2 17.6

Success rate %
avg (std) 90.9 (9.09) 77.3 (13.6) 81.8 (9.09) 54.5 (9.09) 81.8 (9.09)

Note: the untrained object shape is represented with *.

Table 2: The comparison of final success rate considering the effect of
domain randomization and impedance control.

Object shape Circle Ellipse Square Triangle* Triangle
w/o domain randomization %

avg (std) 13.6 (9.09) 9.09 (9.09) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

w/o impedance controller %
avg (std) 63.6 (13.6) 54.5 (9.09) 50.0 (9.09) 22.7 (9.09) 45.5 (13.6)

Note: the untrained object shape is represented with *.
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Figure 5: Example of the proposed solution on multiple peg-in-hole assem-
bly for different trained object shapes (a) circle (b) ellipse (c) square.
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