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Abstract— Currently, existing RL methods are difficult to
apply to multiple peg-in-hole issues due to more complicated ge-
ometric and physical constraints. In addition, previously limited
solutions for multiple peg-in-hole assembly are hard to transfer
into real industrial scenarios flexibly. To effectively address
these issues, this work designs a novel and more challenging
multiple peg-in-hole assembly setup. Based on it, multiple
modalities including vision, proprioception, and force/torque
are learned as compact representations to account for the
complexity and uncertainties of the environment. Furthermore,
RL is used in the simulation to train the policy and the learned
policy is transferred to the real world without extra exploration.
Domain randomization and impedance control are embedded
into the policy to narrow the gap between simulation and reality.
Finally, the evaluation results demonstrate that the proposed
solution can achieve successful multiple peg-in-hole assembly
with the ability to generalize over different object shapes in
the real world.

I. INTRODUCTION

To prompt the high-quality development of the industry,
intelligent robots have become indispensable in realizing
many manufacturing processes [1]. Taking the assembly task
as an example, the global intelligent assembly market is
expected to grow by 30% over the next four years [2]. The
most obvious characteristic of an assembly task is that it
involves mechanical interaction and fits between two or more
objects, such as clearance fits, transition fits, and interference
fits. Therefore, in order to achieve a high-precision assem-
bly, research in multiple dimensions should be considered,
such as the redundancy and clearance of the robot’s own
mechanical precision, pose uncertainties between peg and
hole objects, and the complex physical models involved in
each assembly scene, consisting of geometry, contact force,
and kinematics [3]–[6]. Especially for the single peg-in-hole
assembly, many studies are conducted to achieve promis-
ing results [5], [7]–[11]. However, there exist few studies
on multiple peg-in-hole manipulation because of a more
complicated geometric and physical interaction model [12].
Despite this, the experimental setup of previous multiple peg-
in-hole has many flaws, like the peg is fixed on the end-
effector, the 6-DOF pose of the holes object stays constant,
the shape of the holes object and pegs object is immutable,
and lacking the visual feedback. Practically, their setup with
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these limitations is not in line with the actual multiple peg-
in-hole assembly scenes [13]–[15].

In this paper, we design a new multiple peg-in-hole
assembly setup to solve the flaws mentioned above from
previous work and maximize the transferability which means
a successful policy learned from our setup can be easier to be
deployed in real manufacturing scenarios. Based on this more
challenging task, we also propose a multimodal learning
architecture using reinforcement learning, where features of
multiple modalities are compacted into latent representations
at a high level via a tokenization-based model. It enables
robotic agents to leverage the complementary nature of
these sensing modalities for policy learning. A simulation
environment with the setup is constructed to train the policy
with a soft actor-critic (SAC) algorithm [16]. In addition,
domain randomization is used in simulation to narrow the
gap between the simulation and the real experimental setup.
Furthermore, impedance control is designed and embedded
into the proposed architecture, which helps the policy deal
with our physical contact-rich task. Finally, the proposed
assembly task is evaluated both in the simulation and real
robot experiments, demonstrating that the proposed multiple
modality-driven impedance-based policy trained with domain
randomization achieves successful dynamic assembly. The
primary contributions and novelties of this paper are:

1) We define a novel and more challenging experimental
setup for multiple peg-in-hole assembly task, which is easier
to apply to the real application scenario than previous work
[13]–[15].

2) A tokenization method based on the transformer archi-
tecture is proposed to extract features from robot proprio-
ception and force/torque signals and the extracted features
are further fused with visual representations into a compact
multimodal representation.

3) With domain randomization and impedance control, the
policy for dynamic assembly can be learned successfully
in simulation and then transferred to reality without extra
exploration.

4) Experimental results show the trained policy could
achieve generalization to tasks with different peg shapes
under object uncertainties.

II. METHODOLOGY

An overview of our proposed architecture for multiple peg-
in-hole assembly is depicted in Fig. 1. In this section, we
focus on utilizing the multiple modalities in the simulated
robotic environment to learn a robust policy and then transfer
it to the challenging assembly task. First, we propose a



Simulation 

pj1 sinj1 cosj1vj1

pj7 sinj7 cosj7vj7

posee quaee velee

Proprioception 

Fx

Force/Torque …

Fy Fz

Tx Ty Tz

Position embedding

Linear Projection

Visual 
Input

…

 Encoder

Perceive Transformer

MLP Decoder𝜋

Randomized 
domain

Impedance-based 
Controllerat

𝜋* Impedance-based 
Controller

a*t

Sim-to-Real Policy Transfer Real 

Fig. 1. Overview of the proposed architecture. The left part represents policy training in the simulation environment, where domain randomization is used
to sample the interaction of the assembly task like color, lighting, camera, and robotic dynamics (left). During the training process, multiple modalities
including visual image, proprioception, and force/torque signals are all tokenized and fused into a perceived transformer module. Each predicted policy π
is embedded into an impedance controller to execute torque commands to control the manipulator. Finally, the trained policy π∗ is transferred to the real
world without additional exploration (right).
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Fig. 2. Overview of the visual representation module. 1) pretraining: We
first pre-train the feature encoder and decoder. After that, the latent space
Z∗ to recognize different object shapes is obtained. 2) training: the decoder
and most encoder layers are frozen, and we train the encoder during the
policy learning process.

pretraining-training approach to learn the latent representa-
tion from the visual frames where domain randomization is
used to collect a robust assembly dataset, shown in Fig. 2.
With the pretraining of the encoder-decoder architecture,
a prior of the visual image for each standard peg and
hole shape can be learned. To speed up the whole policy
learning, we further freeze all encoder feature layers except
the output layer. Though in the pretraining process, we need
multiple images of the different hole and peg shapes. Our
final pipeline only needs a single image captured by the
camera at inference time during RL training. Second, a self-
attention-based transformer architecture is applied to learn
the dependencies between robot proprioception states, force-
torque signals in the Cartesian space, and the extracted visual
embedding. Next, the predicted actions are mapped to the
impedance space after decoding the compact representation,
and the SAC-based RL algorithm is trained to achieve
action control. Finally, the trained policy is transferred to
different real assembly tasks directly and adapted to new
task situations.

The encoded feature vector from perceive transformer is
input into an MLP decoder with three hidden layers to predict
the gripper and end-effector actions. The action space in
our task is 7-dimensional, consisting of moving of position,
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Fig. 3. Ablation study for the proposed architecture considering the effect
of the unfrozen encoder and transformer module.

orientation from the end-effector, and the open/close state of
the gripper. The action at is defined as the difference between
the current kinematic state and the desired kinematic state:

apost = spost+1 − spost , apos ∈ [∆x,∆y,∆z] (1)

aorit = sorit+1 ∗ inv(sorit ), aori ∈ [∆α,∆β,∆γ] (2)

agrit = sgrit+1 − sgrit , aori ∈ [0, 1] (3)

where t is the timestamp of the current action, and spos, sori,
and sgrpi represent the scalar value for position, orientation,
and gripper.

III. RESULTS

First, to evaluate the proposed architecture, ablation stud-
ies about the unfrozen encoder module from visual rep-
resentation and the perceived transformer module from
multimodal tokenization are analyzed. Fig. 3 shows that
the proposed architecture could achieve better performance,
where baseline 1 means without both modules, baseline
2 means without the perceive transformer, and baseline 3
means without the unfrozen encoder. However, the success
rate of the proposed approach is not so high because we find
the peg grasped by the gripper cannot be reliably fixed at
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Fig. 4. Comparison of multimodal and various single-modal training.
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Fig. 5. Example of the proposed solution on multiple peg-in-hole assembly
for different trained object shapes (a) circle (b) ellipse (c) square.

TABLE I
THE COMPARISON OF FINAL SUCCESS RATE AND ASSEMBLY TIME

Object shape Circle Ellipse Square Triangle* Triangle
Time (s) 15.0 18.0 18.0 24.2 17.6

Success rate %
avg (std) 90.9 (9.09) 77.3 (13.6) 81.8 (9.09) 54.5 (9.09) 81.8 (9.09)

Note: the untrained object shape is represented with *.

the same position in the MuJoCo simulator especially when
the pegs collide with the holes object, causing some failing
cases during pose adjustment and search depth periods.

Furthermore, we discuss the effect of different modalities
on our challenged assembly task. Our task introduces flexible
grippers and a movable pose of the holes object, so vision
is necessary to obtain the relative position between pegs
and holes. Based on this, we use pure visual features and
pure state information inside the robot to compare the
performance of multi-modal fusion. As shown in Fig. 4,
the training curves demonstrate that the fusion of multiple
modalities can significantly improve the performance of this
task.

Finally, by randomly adjusting the position and orientation
of the holes object in a limited range, we run 22 evaluations

TABLE II
THE COMPARISON OF FINAL SUCCESS RATE CONSIDERING THE EFFECT

OF DOMAIN RANDOMIZATION AND IMPEDANCE CONTROL

Object shape Circle Ellipse Square Triangle* Triangle
w/o domain randomization %

avg (std) 13.6 (9.09) 9.09 (9.09) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

w/o impedance controller %
avg (std) 63.6 (13.6) 54.5 (9.09) 50.0 (9.09) 22.7 (9.09) 45.5 (13.6)

Note: the untrained object shape is represented with *.

for each object in the real experiment. Fig. 5 shows the
robotic multiple peg-in-hole assembly processes for different
trained object shapes. seen from Table. I, the trained policy
from the circle, ellipse, and square could be generalized to
the new triangle shape. The mean assembly time of each
object shape is also computed to justify the relationship
between task difficulty and assembly performance. Finally,
after adapting to the simulation environment again, the test
on the triangle object shape achieves a significant improve-
ment of over 25% in the success rate and a reduction of
over 6.5s in the assembly time, which demonstrates that our
model has a good generalization ability over uncertainties
and object shapes. As seen in Table.II, we further retrain
the policy without adding domain randomization for all
kinds of object shapes. We found that the success rate
for circle, ellipse, square, and triangle shapes are 13.6%,
9.09%, 0, and 0, respectively. And the final trained model
cannot generalize to a new object shape. Furthermore, we
retrain the policy without adding impedance control and
introduce basic position control to execute the output action.
It can be seen that the success rates for all object shapes
are significantly lower than our method, demonstrating the
embedding of impedance skills is necessary to improve the
assembly performance.

IV. CONCLUSION AND DISCUSSION

We present a solution for the multiple peg-in-hole assem-
bly task using a multimodal representation by transferring
the trained policy in simulation to the real world without
extra exploration. A special visual representation module
and tokenization-based transformer module are separately
proposed to compact the feature as the backbone of rein-
forcement learning. Furthermore, the policy learning process
also incorporates domain randomization and an impedance
controller, which speeds up the transferring process and nar-
rows the gap between simulation and reality. Experimental
results on a real robot show that our solution could achieve
a high success rate for a more challenging multiple peg-in-
hole assembly setup, and the generalization ability is also
validated by different object shapes.

This work sets the number of pegs and holes as two and
the experimental objects consist of four kinds of shapes. In
the future, we need to continue studying smart assembly
involved in more complicated object interactions in terms of
object number, object size, and object shape. We believe that
further research about robotic multiple peg-in-hole assembly
based on reinforcement learning can significantly improve
the efficiency of related manufacturing processes.
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