Transferable Learning-Based Control using
Neural-Fly

Michael O’Connell*!, Guanya Shi*2, Xichen Shi!, Kamyar Azizzadenesheli?,

Animashree Anandkumar!-3

Abstract—Executing safe and precise flight maneuvers in
dynamic high-speed winds is important for the ongoing com-
moditization of uninhabited aerial vehicles (UAVs). However,
since the relationship between various wind conditions and its
effect on aircraft maneuverability is not well understood, it is
challenging to design effective robot controllers that transfer
well to different environments and conditions. Neural-Fly is a
learning-based approach that allows rapid online learning by
incorporating pre-trained representations through deep learning.
Neural-Fly is robust and demonstrates transferability to different
tasks, environments, and drones. In this workshop, we will
present the latest results for Neural-Fly, discuss implementation
considerations, and show case other applications of Neural-Fly.

I. INTRODUCTION

The proliferation of uninhabited aerial vehicles (UAVs)
offers the prospect to revolutionize many aspects of our
daily lives but requires increased precision and robustness.
Applications range from drone delivery to drone rescue and
search, and from urban air mobility to autonomous farming
tools. However, these applications demand precise and agile
control methods that can handle the complex aerodynamics
while adapting to changing environmental and operating con-
ditions. Flying in windy environments introduces even more
complexity because of the unsteady aerodynamic interactions
between the drone, the induced airflow, and the wind. These
unsteady and nonlinear aerodynamic effects substantially de-
grade the performance of conventional UAV control methods
that neglect to account for them in the control design. Our
recent work, Neural-Fly [1]], offers a solution, by pretraining
a neural network to enable rapid and robust online learning
of wind effects. This enables Neural-Fly to transfer between
different tasks, environments, and drones while maintaining
high performance.

Prior approaches partially capture these effects with simple
linear or quadratic air drag models, which limit the tracking

* Equal contribution to this work. ! California Institute of Technology,
2 Robotics Institute, Carnegie Mellon University, > NVIDIA Corporation, *
Latitude AL
We thank J. Burdick and J.-J. E. Slotine for their helpful discussions. We
thank M. Anderson for his help configuring the quadrotor platform, and M.
Anderson and P. Spieler for their help troubleshooting hardware. We also
thank N. Badillo and L. Pabon Madrid for help in experiments.
This research was developed with funding from the Defense Advanced
Research Projects Agency (DARPA). This research was also conducted in
part with funding from Raytheon Technologies. The views, opinions, and/or
findings expressed are those of the authors and should not be interpreted as
representing the official views or policies of the Department of Defense or the
U.S. Government. The experiments reported in this article were conducted at
Caltech’s Center for Autonomous Systems and Technologies (CAST).

, Yisong Yue

14 and Soon-Jo Chung'

Prediction-based
adaptation

Wind-specific
linear coefficients

Adaptive

Velocity

Q
& —©

Attitude

control

o
o

Residual

O Learned

: basis function force prediction
O § net

PWM

Wind-invariant
representation

Drone state

Fig. 1: Neural-Fly design. Neural-Fly learns a model of
aerodynamics with linearly separated wind-variant and wind-
invariant components. Since only part of the model must be
updated in real time, Neural-Fly can quickly learn and adapt
to new wind conditions.

performance in agile flight and cannot be extended to external
wind conditions [2]], [3]. Although more complex aerodynamic
models can be derived from computational fluid dynamics
[4]], such modelling is often computationally expensive, and
is limited to steady non-dynamic wind conditions. Adaptive
control addresses this problem by estimating linear parametric
uncertainty in the dynamical model in real time to improve
tracking performance. Recent state-of-the-art in quadrotor
flight control has used adaptive control methods that directly
estimate the unknown aerodynamic force without assuming
the structure of the underlying physics, but relying on high-
frequency and low-latency control [S]—[8]. In parallel, there
has been increased interest in data-driven modeling of aero-
dynamics (e.g., [9]-[12]), however existing approaches cannot
effectively adapt in changing or unknown environments such
as time-varying wind conditions.

In this extended abstract, we discuss the general method
and applications of our recently-developed data-driven ap-
proach, called Neural-Fly [1]], and how it can be used to
train transferable learning-based control algorithms. We will
present implementation considerations and show case other
applications of Neural-Fly. Our method, depicted in Fig. [I]
demonstrates an efficient algorithm to pretrain a neural net-

Fig. 2: Agile flight through narrow gates. Neural-Fly was tested in the Caltech Real Weather Wind Tunnel where wind effects
can be visualized using smoke machines. The UAV follows an agile trajectory through narrow gates, which are slightly wider
than the UAV itself, under challenging wind conditions. These panels show the moment the UAV passed through the gate and
the complex interaction between the UAV and the wind.

work so that it can be adapted to different environments.
Neural-Fly also demonstrates a robust method to update such
a neural network in real-time, using our robust adaptation
algorithm. Neural-Fly has been applied to deep-learning-based
trajectory tracking control, and it has allowed quick adap-
tation to rapidly-changing wind conditions with centimeter-
level position-error tracking of agile manuevers. Furthermore,
Neural-Fly has demonstrated the ability to transfer control
policies from one robot to another, and from limited range
of constant wind speeds to a wide range of time-varying wind
speeds.

II. THE NEURAL-FLY METHOD

Consider the general robot dynamics model

M(q)§+C(q,4)g+g(q) =u+ f(q,4,w) (1)

where ¢,q,§ € R are the n dimensional position, velocity,
and acceleration vectors, M(q) is the symmetric, positive
definite inertia matrix, C(g,q) is the Coriolis matrix, g(q)
is the gravitational force vector and u € R" is the control
force. Most importantly, f(qg,qg,w) incorporates unmodeled
dynamics, and w € R is an unknown hidden state used to
represent the underlying environmental conditions, which is
potentially time-variant. In this work, w represents the wind
profile and vehicle used for training, and each different wind
profile yields different unmodeled aerodynamic disturbances
for the UAV.

The Neural-Fly algorithm decomposes the unmodeled dy-
namics into a wind-condition-independent basis function
¢(q,q) and a wind-condition-dependent linear coefficient
a(w), that is,

f(q.4.w) = ¢(q. g)a(w). 2)

In the supplementary material for [I]], we provided that the
decomposition ¢(q,¢)a(w) exists for any analytic function
f(g,q,w), analyze ability of our method to untangle the
dependence of ¢ on w, and demonstrate the stability and
robustness of the Neural-Fly adaptation algorithm and overall
method through stability analysis and experimental demonstra-
tions. Here, we will provide an overview of the algorithms and
provide some intuition for the key aspects that allow Neural-
Fly to transfer to new wind conditions and vehicles.

Our method has two main stages: an offline learning phase
and an online adaptive control phase used as real-time online
learning. For the offline learning phase, we have developed
Domain Adversarially Invariant Meta-Learning (DAIML) that
learns a wind-condition-independent deep neural network
(DNN) representation of the aerodynamics in a data-efficient
manner. The output of the DNN is treated as a set of basis
functions that represent the aerodynamic effects. This repre-
sentation is adapted to different wind conditions by updating
a set of linear coefficients that mix the output of the DNN.
DAIML is data efficient and uses only 12 total minutes of
flight data in just 6 different wind conditions to train the DNN.
DAIML uses spectral normalization [9], to control the
Lipschitz property of the DNN to improve generalization to
unseen data and provide closed-loop stability and robustness
guarantees. As seen in Fig. [3] training data generated in
different wind conditions can have high correlation between
the actual trajectory of the vehicle and the wind condition
present. To counter this correlation and prevent overfitting,
DAIML uses a discriminative network, which ensures that the
learned representation is wind-invariant and that the wind-
dependent information is only contained in the linear coef-
ficients that are adapted in the online control phase. The
result is that DAIML trains a concise representation of the

Histograms of f, Histograms of pitch

0.7 0.0 m/s
3.7m/s 0.04
6.1 m/s

01 I
0.0 0.00
10 -5 [} H -4 -20 a0 60

fi [N]

0 20
pitch [deg]

Fig. 3: Input-output correlation in the training data.
Histograms showing data distributions in different wind con-
ditions, showing that the shift in wind conditions causes a
distribution shift in the input Left: distributions of the x-
component of the wind-effect force, f,. Right: distributions
of the pitch, a component of the state used as an input to the
learning model.

Mean tracking error in each lap
*

7
31.6 4 | Extrapolation region
Interpolation region

(not covered in training)

-
<
3

Nonlinear
INDI

L1
NF-Constant
NF-Transfer
NF

PID

|
1
|
|
|
1
T
|
1
|
i
t
|
)

H
°
o

Tracking error [cm]
w
o

* |

3.24

1
i
]
1
|
1
T
|
|
|

0.0 42 85 121
Wind speed [m/s]

Fig. 4: Mean tracking errors in different wind conditions.
Solid lines show the mean error over 6 laps and the shade
areas show standard deviation of the mean error on each lap.

aerodynamics that is both data efficient and generalizes well
to new wind conditions and even new vehicles.

For the online adaptive control phase, Neural-Flyuses a
robust and fast adaptive control law to update the model for
new wind conditions. The adaptation algorithm is built from
a Kalman Filter [[14], [[15]] estimator of the linear coeflicients,
a(w). The underlying model used in the Kalman Filter design
naturally provides robustness and regularization properties.
The Kalman Filter is augmented with a tracking error term to
make the closed loop dynamics stable during rapid adaptation.
The combination of the prediction error based Kalman filter
and tracking error based adaptation term makes this approach a
composite adaptive control law, and effectively guarantees fast
and stable adaptation to any wind condition and robustness
against imperfect learning. The speed of adaptation is further
aided by the concise representation learned from DAIML.

A key result of the Neural-Fly method is robustness to
error in the learned representation of the unmodeled dynam-
ics. Here, we provide a brief overview of the stability and
robustness guarantees for the Neural-Fly method. First, define
the representation error d(t), as the difference between the
unknown dynamics f (g, ¢, w) and the best linear weight vector
a given the learned representation ¢(q,q), namely, d(t) =
f(q,q,w) — ¢(q,q)a(w). In [1] Theorem 1, we showed that
the upper bound for the vehicle tracking error, g, scales lin-
early with the representation error, namely, lim;_, ||G(?)] <
C|ld(?)]l, where C is a constant that depends on the control
and adaptation gains. Thus, when transferring to a new task,
environment, or vehicle, the Neural-Fly method’s performance
is bounded by how well the learned representation generalizes
to the new task, environment, or vehicle. DAIML improves the
generalization of the learned representation, and thus directly
improves the transferability of the Neural-Fly method.

III. RESULTS

We built a quadrotor UAV for our primary data collection
and all experiments, shown flying through narrow gates with
wind and smoke in Fig. 2] This vehicle features a wide-X
configuration, weighs 2.6kg, tilted motors, and is built off

standard flight control software, PX4, and standard robotic
middleware, Robotic Operating System.

To study the generalizability and robustness of our approach,
we also use an Intel Aero Ready to Fly drone to collect an
alternate dataset. This dataset is used to train a representation
of the wind effects on the Intel Aero drone, which we test on
our custom UAV. The Intel Aero drone has a symmetric X
configuration, weighs 1.4kg, and does not have tilted motors.

Neural-Fly was tested on an agile figure-8 trajectory and
compared with several methods that represent the state of art in
quadrotor control. Each method was tested in a variety of wind
conditions, including wind speeds inside the range of wind
speeds seen in training (Om/s to 4.2m/s), and wind speeds
outside the range of wind speeds seen in training (8.5 m/s to
12.1 m/s), and time varying wind speeds (8.5 + 2.4 sin()m/s)
that break the constant wind-speed assumption made during
training. Using Neural-Fly, we report an average improvement
of 66 % over a nonlinear tracking controller [16]], 42 % over an
L adaptive controller [6], [8], and 35 % over an Incremental
Nonlinear Dynamics Inversion (INDI) controller [5]].

We also compare Neural-Fly with two variants of our
method. The first variant of our method, Neural-Fly-Constant,
is similar in structure and performance to £; and INDI, all
of which directly adapt to the unknown dynamics without
assuming the structure of the underlying physics. The second
variant, Neural-Fly-Transfer, demonstrates that our method is
robust to changes in vehicle configuration and model mis-
match. This generalizability and robustness is a key advantage
of our method, and suggests that Neural-Fly can be trained
once for a class of vehicles and safely transfer to any vehicle
in that class.

Finally, we demonstrate that our method enables a new set
of capabilities that allow the UAV to fly through low-clearance
gates following agile trajectories in gusty wind conditions
(Fig.).

Together, these tests demonstrate not only the effectiveness
of our method, but also its robustness to modeling error
and generalization to new conditions, key considerations for
transfering learning-based control algorithms between tasks,
vehicles, and environments.

IV. CONCLUSION

When measuring position tracking errors, we observe that
our Neural-Fly method outperforms state-of-the-art flight con-
trollers in all wind conditions. Neural-Fly can generalize to
new conditions, as demonstrated by its performance in wind
speeds outside the training range and in time varying wind
speeds. Furthermore, Neural-Fly is robust to changes in vehicle
configuration and modeling errors, as demonstrated by the
similar performance of Neural-Fly-Transfer. Our control algo-
rithm is formulated generally for all robotic systems described
by the Euler-Lagrange equation, and should be applicable to
a wide range of robotic systems. Neural-Fly demonstrates a
new paradigm for designing adaptable controllers that can be
trained once and then used to control a wide range of vehicles.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

REFERENCES

M. O’Connell, G. Shi, X. Shi, et al., “Neural-Fly en-
ables rapid learning for agile flight in strong winds,” Sci-
ence Robotics, May 4, 2022. por: |10.1126/scirobotics.
abm6597. (visited on 05/13/2022).

P. Foehn, A. Romero, and D. Scaramuzza, “Time-
optimal planning for quadrotor waypoint flight,” Science
Robotics, Jul. 21, 2021. [Online]. Available: https://
www.science.org/doi/abs/10.1126/scirobotics.abh1221
(visited on 09/08/2021).

M. Faessler, A. Franchi, and D. Scaramuzza, “Differen-
tial Flatness of Quadrotor Dynamics Subject to Rotor
Drag for Accurate Tracking of High-Speed Trajecto-
ries,” IEEE Robotics and Automation Letters, vol. 3,
no. 2, pp. 620-626, Apr. 2018, 1ssN: 2377-3766. poI:
10.1109/LRA.2017.2776353.

P. Ventura Diaz and S. Yoon, “High-Fidelity Computa-
tional Aerodynamics of Multi-Rotor Unmanned Aerial
Vehicles,” in 2018 AIAA Aerospace Sciences Meeting,
ser. AIAA SciTech Forum, American Institute of Aero-
nautics and Astronautics, Jan. 7, 2018. por: 10.2514/6.
2018-1266. (visited on 03/27/2023).

E. Tal and S. Karaman, “Accurate Tracking of Aggres-
sive Quadrotor Trajectories Using Incremental Nonlin-
ear Dynamic Inversion and Differential Flatness,” IEEE
Transactions on Control Systems Technology, vol. 29,
no. 3, pp. 1203-1218, May 2021, 1ssN: 1558-0865. por:
10.1109/TCST.2020.3001117.

S. Mallikarjunan, B. Nesbitt, E. Kharisov, E. Xargay,
N. Hovakimyan, and C. Cao, “L1 Adaptive Controller
for Attitude Control of Multirotors,” in AIAA Guidance,
Navigation, and Control Conference, Minneapolis, Min-
nesota: American Institute of Aeronautics and Astro-
nautics, Aug. 13, 2012, 1sBN: 978-1-60086-938-9. pot:
10.2514/6.2012-4831. (visited on 03/04/2022).

J. Pravitra, K. A. Ackerman, C. Cao, N. Hovakimyan,
and E. A. Theodorou, “L1-Adaptive MPPI Architec-
ture for Robust and Agile Control of Multirotors,” in
2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Oct. 2020, pp. 7661-7666.
por: 10.1109/IROS45743.2020.9341154.

D. Hanover, P. Foehn, S. Sun, E. Kaufmann, and D.
Scaramuzza, “Performance, Precision, and Payloads:
Adaptive Nonlinear MPC for Quadrotors,” Sep. 9, 2021.
arXiv: 2109.04210 [cs]. [Online]. Available: http://
arxiv.org/abs/2109.04210 (visited on 09/16/2021).

G. Shi, X. Shi, M. O’Connell, et al., “Neural Lander:
Stable Drone Landing Control using Learned Dynam-
ics,” 2019 International Conference on Robotics and
Automation (ICRA), pp. 9784-9790, May 2019. por:
10.1109/ICRA .2019.8794351. arXiv: [1811.08027.
(visited on 09/02/2021).

G. Shi, W. Honig, Y. Yue, and S.-J. Chung, “Neural-
Swarm: Decentralized Close-Proximity Multirotor Con-
trol Using Learned Interactions,” in 2020 IEEE Interna-

[11]

tional Conference on Robotics and Automation (ICRA),
May 2020, pp. 3241-3247. por: |10.1109/ICRA40945.
2020.9196800.

G. Shi, W. Honig, X. Shi, Y. Yue, and S.-J. Chung,
“Neural-Swarm?2: Planning and Control of Hetero-
geneous Multirotor Swarms Using Learned Interac-
tions,” IEEE Transactions on Robotics, vol. 38, no. 2,
pp- 1063-1079, Apr. 2022, 1ssN: 1941-0468. por: |10.
1109/TRO.2021.3098436.

G. Torrente, E. Kaufmann, P. Fohn, and D. Scaramuzza,
“Data-Driven MPC for Quadrotors,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 3769-3776, Apr.
2021, 1ssN: 2377-3766, 2377-3774. por: 10.1109/LRA.
2021.3061307. (visited on 10/08/2021).

P. L. Bartlett, D. J. Foster, and M. J. Telgarsky,
“Spectrally-normalized margin bounds for neural net-
works,” in Advances in Neural Information Processing
Systems, vol. 30, Curran Associates, Inc., 2017. [On-
line]. Available: https://proceedings.neurips.cc/paper/
2017 / hash / b22b257ad0519d4500539da3c8bcf4dd -
Abstract.html| (visited on 11/18/2022).

R. E. Kalman, “A New Approach to Linear Filtering and
Prediction Problems,” Journal of Basic Engineering,
vol. 82, no. 1, pp. 3545, Mar. 1, 1960, 1ssN: 0021-
9223. por: 10.1115/1.3662552. (visited on 09/21/2021).
R. E. Kalman and R. S. Bucy, “New Results in Lin-
ear Filtering and Prediction Theory,” Journal of Basic
Engineering, vol. 83, no. 1, pp. 95-108, Mar. 1, 1961,
1ssN: 0021-9223. por: 10.1115/1.3658902. (visited on
09/21/2021).

D. Mellinger and V. Kumar, “Minimum snap trajectory
generation and control for quadrotors,” in 2011 IEEE
International Conference on Robotics and Automation,
May 2011, pp. 2520-2525. por: [10.1109/ICRA.2011.
5980409.

https://doi.org/10.1126/scirobotics.abm6597
https://doi.org/10.1126/scirobotics.abm6597
https://www.science.org/doi/abs/10.1126/scirobotics.abh1221
https://www.science.org/doi/abs/10.1126/scirobotics.abh1221
https://doi.org/10.1109/LRA.2017.2776353
https://doi.org/10.2514/6.2018-1266
https://doi.org/10.2514/6.2018-1266
https://doi.org/10.1109/TCST.2020.3001117
https://doi.org/10.2514/6.2012-4831
https://doi.org/10.1109/IROS45743.2020.9341154
https://arxiv.org/abs/2109.04210
http://arxiv.org/abs/2109.04210
http://arxiv.org/abs/2109.04210
https://doi.org/10.1109/ICRA.2019.8794351
https://arxiv.org/abs/1811.08027
https://doi.org/10.1109/ICRA40945.2020.9196800
https://doi.org/10.1109/ICRA40945.2020.9196800
https://doi.org/10.1109/TRO.2021.3098436
https://doi.org/10.1109/TRO.2021.3098436
https://doi.org/10.1109/LRA.2021.3061307
https://doi.org/10.1109/LRA.2021.3061307
https://proceedings.neurips.cc/paper/2017/hash/b22b257ad0519d4500539da3c8bcf4dd-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/b22b257ad0519d4500539da3c8bcf4dd-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/b22b257ad0519d4500539da3c8bcf4dd-Abstract.html
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3658902
https://doi.org/10.1109/ICRA.2011.5980409
https://doi.org/10.1109/ICRA.2011.5980409

	Introduction
	The Neural-Fly Method
	Results
	Conclusion

