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Abstract— Robot morphology, which includes the physical
dimension and shape but also the placement and type of
actuators and sensors, is highly variable. This also applies
to different robot hand and grippers, equipped with force or
tactile sensors. Unlike in computer vision, where information
from cameras is robot and largely camera-independent, haptic
information is morphology-dependent, which makes it difficult
to transfer object recognition and other pipelines between
setups. In this work, we introduce a shape reconstruction and
grasping task to evaluate the success of haptic information
transfer between robotic setups, and propose feature descriptors
that can help in standardizing the haptic representation of
shapes across different robotic setups.

I. INTRODUCTION
There are numerous different grippers and end-effectors

available for robotic arms both commercially and for research
purposes. Further, each gripper may be fitted with sensors
for tactile and proprioceptive feedback. There are also a
variety of different tactile sensors available which can be
integrated with grippers. We can classify the most commonly
used tactile sensors into two classes based on their working
principle—first, optical sensors like Gelsight [1], DIGIT [2]
and TacTip [3] which use vision processing from a camera
embedded behind the sensor’s surface membrane to extract
information from object interations. Second, transductive
sensors that convert mechanical changes to electric signals
for feedback, like the SynTouch BioTAC [4], SINGLEX [5],
Contactile [6] and uSkin [7]. The transductive sensors can
further be split into sub-types based on how the mechanical
interaction is converted to electrical signals. Some grippers
like the BarrettHand [8] and Shadow Hand [9] may also
come readily integrated with their own in-house tactile
sensors.

For example, in Figure 1, we can see different setups
aiming to haptically explore the same object. The GelSight
sensor will give feedback in the form of an image of its
membrane, which is not interpretable by other sensors. The
BioTac sensor will provide feedback as a time series of
measured reactive force at each fingertip, while the RG6
gripper will report back the force at its actuator. The feedback
from the iCub hand will comprise of a series of values
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Fig. 1: Different robotic setups explore the same object but
provide different feedback. (a) The GelSight sensor mounted
on a two finger gripper provides image feedback. (b) The
BioTac sensor mounted on a Shadow Hand provides a single
time series force variation per finger. (c) The Barrett Hand
and (d) the iCub Hand provide force feedback from 96 and
104 tactile units respectively.

for each of its 104 tactile sensing units—12 on each finger
and 44 in the palm. With the large variety of gripper and
tactile sensing options available, data collection to build
larger datasets of tactile robot-object interaction and ma-
nipulation faces some challenges. It is highly dependent
on the robotic setup, since each morphological combination
of {robotic arm, gripper, tactile sensor} will have different
data structures for how interaction feedback is reported and
stored. Compiling data from different setups for morphology-
independent learning and exploration requires the develop-
ment of processing methods for each setup individually.
These factors also hinder the development of multimodal
sensing datasets [10]–[13], even though such datasets exist
from independent works, since it is difficult to compile
and compare them because of the varying nature of tactile
feedback data.

This work suggests a shape reconstruction and grasping
task to develop methods for transferring haptic object infor-
mation among robotic setups. The objects used are from the
YCB object dataset [14], although the set of object models
will be unknown to the robot. We use one robotic setup to
haptically explore the target object and aim to reconstruct its
shape. Then, we transfer the learned shape to other setups
to carry out grasping tasks, and evaluate the success of the
grasping task. To transfer haptic information, a concept of
morphology-independent haptic shape representation is intro-
duced. The representation is based on how three-dimensional



shapes are constructed in computer graphics [15]—simple
features that may be extracted using any gripper and tactile
sensor combination. Since it is possible to extract the same
features for many different robotic setups, they should also
act as a common interpretation of object shape information
between the different setups.

II. LITERATURE REVIEW

Most of the research including transfer learning and hap-
tics focuses on transferring a network trained on visual
data to infer haptic data, and vice versa. Recent works
[16]–[19] investigate and implement different networks that
can find correlations between visual and haptic input for
object recognition. Navarro-Guerrero et al. [20] have done a
comprehensive literature review of this connection between
visual and haptic perception across different fields, from
cognition and neuroscience to robotics. Our interpretation
of the “transfer” of knowledge in “transfer learning” focuses
less on the transfer between different sensory modalities, and
more on the transfer between different physical embodiments
of the same tactile modality.

Towards object reconstruction, Luo et al. [21] introduced
iCLAP, an iterative touch exploration method to recreate
objects accurately that decided exploration based on possible
feature completion. Pezzementi et al. [22] used feature
recognition from tactile arrays mounted on a gripper to
formulate an exploration plan to reconstruct the shapes of
objects. Rustler et al. [23] accomplish shape reconstruction
by using a tactile “poking” action to detect contact with
objects and subsequently filling the Cartesian space. The
tactile exploration is paired with vision to generate object
models with an Implicit Geometric Regularization Network
(IGR) [24]. Very good accuracy was achieved for shape
reconstruction within five to ten touches when visual data
was also provided. Other works include edge following with
the iCub robot [25] and a simulator for shape reconstruction
[26].

To standardize tactile sensing across different robotic
setups, there have been attempts in recent years to correlate
it to visual data. Le et al. [27] and Takahashi et al. [28]
attempted to correlate time series of vision and tactile data
by using Decoder-Encoder agents that found common latent
spaces between the two modalities and found it possible to
predict next-frame touch from video, and images of object
surfaces from the tactile data. Zambelli et al. [29] created a
multimodal datset with the iCub robot to correlate all visual,
haptic, and audio sense to each other. Each of these works
perform very well, but are their learning is limited to their
own setups. An interesting attempt towards aggregating and
interpreting raw data from large tactile arrays on grippers
was presented in [30], which used convolutional neural
networks (CNNs) fine tuned for their morphology and data
stream coming from their setup to achieve good physical
property estimation results. The network was named the
“Morphology Specific CNN”, which showcases the difficulty
in generalizing learning networks or data collection across
different robotic setups.

III. TOUCH PRIMITIVES

(a) Vertex (b) Edge

(c) Flat Surface (d) Curved Surface

Fig. 2: Detection of different shape primitives on the fingers
and palm of the Barrett Hand.

A fundamental way to describe the shapes of objects is
to break them down into vertices, edges and surfaces [15].
Although rudimentary, these four primitives are the foun-
dation to defining three-dimensional shapes. This simplistic
method does not take into account detailed features like
surface texture or the roughness of materials, but by recog-
nizing these features humans are able to achieve successful
object recognition rapidly. We propose the identification
of these same features by grippers as “touch primitives”.
Each exploration of the object can give multiple touch
primitives depending on the number of fingers in the gripper
and number of regions fitted with tactile arrays, and with
sufficient sampling we are able to collect enough primitives
to create a volumetric boundary for the object. The possible
types of primitives are: vertex, edge, flat surface, and curved
surface. As long as a gripper/sensor combination is able to
detect these features, they should be able to record data in the
suggested morphology-independent format below. An object
exploration O is described as a set of primitives P, where
each primitive is described by:

P = {⃗x, i, d⃗i} (1)

where x⃗ is the position and orientation of the finger or
tactile array that detected the primitive, i is the type of primi-
tive, holding values 1 to 4 for “vertex”, “edge”, “flat surface”
and “curved surface” respectively. The primitive descriptor
d⃗i helps us orient the primitive in 3D space with respect to
x⃗. For the “vertex” primitive, it is the same as x⃗. For “edge”



Fig. 3: Complete task for the transfer of object information between setups.

primitives, it is the slope of the detected edge on the surface
of the tactile array. For the surface primitives, it is the normal
to the tactile array at the point of maximum force. As a first
implementation for the extraction of touch primitives, we
choose the Barrett Hand, a three-fingered anthropomorphic
hand with torque and position feedback, as well as arrays of
tactile sensors on each finger and the palm. The alignment
of the tactile sensors on the hand allows for the recognition
of the simple touch primitives, as shown in Figure 2.

This concept of using touch primitives for object rep-
resentation opens up many avenues for future research as
well. First, how these primitives can be used to recreate
and recognize object shapes with accuracy. This is discussed
as our target task in the next section as well. Further, how
different grippers can extract the same primitives. Integrating
grippers with various tactile sensors provides them with such
capabilities, however, we can also investigate whether the
same primitives can be recognized by the grippers as a result
of sequential exploration without rich tactile feedback. Maye
et al. [31] describe how sensorimotor contingency theory can
be used to infer context and information from a robot based
on its state and action exploration sequence. This theory
may allow grippers without tactile sensing capabilities to
extract touch primitives from target objects as well. Next,
once the extraction of geometric touch primitives is accom-
plished, there will also be the possibility to integrate physical
properties into the same description vector with stiffness and
friction maps as seen in [32]. Finally, if the proposed method
of representing objects is accurate and useful in transferring
object information between robotic setups, generating grasp
proposals using touch primitives as inputs can be explored.

IV. SHAPE RECONSTRUCTION AND
EVALUATION TASK

Our proposed task to develop methods for haptic object
information passing between different robotic setups is the
task of shape reconstruction and grasping for unknown target
objects. This will first be carried out on the primary setup—

a BarrettHand gripper mounted on a KUKA LBR IIWA
arm, extracting touch primitives from target objects in a
pre-defined sequential exploration. A pre-defined sequence
is easier for exploration when vision is not being used.
Then the collected information may be communicated to
other setups, (a) the Robotiq 2F-85 gripper, equipped with
the DIGIT tactile sensor, mounted on a KUKA LBR IIWA
robotic arm, and (b) the iCub robot integrated with its own
tactile array. Successful task completion will be evaluated
via the following metrics:

• The shape reconstruction on the primary setup is mea-
sured by evaluating the Intersection over Union metric,
comparing the reconstructed shape to ground truth point
cloud models of the target objects. These models will
not be known beforehand to the robot, and will only be
used during evaluation.

• Successful information transfer via touch primitives is
observed via successful grasping of the target object by
the other robot setups. A practical metric will be used
to test grasp success, as suggested in Le et al. [33]. The
test comprises of grasping the object using proposed
grasps, shaking it, and measuring the time it takes for
the object to lose contact with the gripper. They show
that better grasping proposals improve the shake time
as well.

As a smaller goal, preliminary work is restricted to recog-
nition of the target object from a pool of already-known
object models stored in memory, rather than attempting
reconstruction of unknown objects, which is a more complex
exploration activity and more susceptible to environment
and computational noise. For object recognition from touch
primitives, we are planning to compare the methods noted
below. Exploring these shape completion methods with our
touch primitives as input will also help with the eventual task
of shape reconstruction of unknown objects.
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