
Automatic off-line design of robot swarms:
exploring the transferability of control software and

design methods across different platforms
Miquel Kegeleirs∗

IRIDIA, Université libre de Bruxelles
Brussels, Belgium

miquel.kegeleirs@ulb.be

David Garzón Ramos∗
IRIDIA, Université libre de Bruxelles

Brussels, Belgium
david.garzon.ramos@ulb.be

Lorenzo Garattoni
Toyota Motor Europe

Brussels, Belgium
lorenzo.garattoni@toyota-europe.com

Gianpiero Francesca
Toyota Motor Europe

Brussels, Belgium
gianpiero.francesca@toyota-europe.com

Mauro Birattari�
IRIDIA, Université libre de Bruxelles

Brussels, Belgium
mauro.birattari@ulb.be

Abstract—Automatic off-line design is an attractive approach
to implementing robot swarms. In this approach, a designer
specifies a mission for the swarm, and an optimization process
generates suitable control software for the individual robots
through computer-based simulations. Most relevant literature
has focused on effectively transferring control software from
simulation to physical robots. For the first time, we investigate
(i) whether control software generated via automatic design is
transferable across robot platforms and (ii) whether the design
methods that generate such control software are themselves trans-
ferable. We experiment with two ground mobile platforms with
equivalent capabilities. Our measure of transferability is based
on the performance drop observed when control software and/or
design methods are ported from one platform to another. Results
indicate that while the control software generated via automatic
design is transferable in some cases, better performance can be
achieved when a transferable method is directly applied to the
new platform.

Index Terms—Automatic design, swarm robotics, transferabil-
ity, AutoMoDe, evolutionary robotics.

I. INTRODUCTION

A robot swarm [1], [2] is a highly redundant group of robots
that operates autonomously without relying on centralized
control or external infrastructure. Instead, swarm individuals
rely on local sensing and communication to self-organize [3].

∗MK and DGR contributed equally to this work and should be recognized
as co-first authors. Original software was implemented by MK. Chocolate
and EvoStick were developed by GF. The experiments were performed by
MK with the assistance of DGR. The manuscript was drafted by DGR and
revised by MK and MB. All authors contributed to the development of the
ideas, read the manuscript, and provided comments. The research was directed
by MB. Correspondence to mauro.birattari@ulb.be.

The project has received partial funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (DEMIURGE Project, grant agreement No 681872)
and from Belgium’s Wallonia-Brussels Federation through the ARC Advanced
project GbO-Guaranteed by Optimization. The authors acknowledge support
from the Belgian Fonds de la Recherche Scientifique – FNRS and from the
Colombian Ministry of Science, Technology and Innovation – Minciencias.

By acting collectively, robots can accomplish tasks that they
could not accomplish individually [4].

Designing the collective behavior of a swarm is particularly
challenging. No universally applicable methodology exists for
developing the control software of the individual robots so that
a desired collective behavior emerges [5]. Typically, designers
manually refine control software until the desired collective
behavior is obtained. This trial-and-error design process is
costly, time-consuming, and does not guarantee reproducible
or transferable results. Automatic off-line design [6] is an
appealing alternative. In this approach, the problem of design-
ing control software for individual robots is re-formulated as
an optimization problem. Given mission specifications and a
platform description, an optimization algorithm searches for
suitable control software for the robots. The automatic design
process aims to produce control software that maximizes
swarm performance in the mission at hand, according to a
mission-specific performance metric provided as part of the
mission’s formal specification.

Neuroevolution [7] is the traditional approach to the au-
tomatic off-line design of robot swarms. In this approach,
control software takes the form of an artificial neural network
with parameters tuned via artificial evolution. More recently,
automatic modular design [8] has been proposed as an alter-
native to neuroevolution. In modular design, an optimization
algorithm selects and tunes predefined software modules into
a specific control architecture (e.g., finite-state machines [8]
or behavior trees [9]). Both in neuroevolution and the modular
approach, the design process is conducted via computer-based
simulations. The resulting control software is then transferred
to physical robots and assessed in the target environment.

Control software produced via automatic off-line design
suffers from the reality gap [10]. Unavoidable differences be-
tween the design environment (simulation) and the deployment
environment (physical robots) can cause a performance drop



Fig. 1. From left to right, e-puck and Mercator robots.

in the swarm [8], [11]–[14]. When comparing design methods,
the smaller the performance drop, the greater a method’s
ability to cross the reality gap.

Building on this idea, we study the transferability of control
software and automatic design methods across different robot
platforms. We contend that the process of transferring control
software across different platforms gives rise to challenges
akin to those presented by the reality gap. When discussing
transferability, we consider cases where the control software
is designed for one platform and then deployed on another, or
when an automatic design method conceived for one platform
is applied to another. This is reminiscent of the reality gap
problem, which emerges when designing control software in
simulation for execution on real robots.

In this preliminary study, we first investigate the conditions
under which modular and neuroevolutionary design methods
conceived for a given robot platform can produce control
software for a different one. Then, we investigate whether
control software produced via automatic design can be directly
transferred from one platform to another. The two platforms
considered are ground robots endowed with equivalent sensing
and actuation capabilities.

II. EXPERIMENTS

We consider two swarms: one comprising three e-puck [15],
[16] robots, and the other, three Mercator [17] robots. We can
formally describe the sensing and actuation capabilities of the
two platforms with the same reference model RM 1.2 [18]—
see Table I—which defines the inputs and outputs on which
control software operates [8]. This is key to enabling the
transferability between the two platforms. The e-puck and
Mercator (Figure 1) differ in size, with the e-puck being
roughly one-third the size of the Mercator. They also differ
in linear speed and sensor range. However, their speed/size
and sensor-range/size ratios are approximately the same.

We design control software for e-pucks and Mercators
using two automatic methods originally conceived for the e-
puck: Chocolate and EvoStick. Chocolate [11] is a
modular design method from the AutoMoDe [19] family and
EvoStick [8] is an implementation of the neuroevolutionary
approach. We select these two methods because they have been
largely used in the automatic design of collective behaviors

TABLE I
REFERENCE MODEL RM 1.2. INPUT AND OUTPUT VALUES OF

E-PUCKS’ (EP) AND MERCATORS’ (ME) CONTROL SOFTWARE.

Input Value–EP Value–ME Description

prox ((0, 1); (−1, 1)π) ((0, 1); (−1, 1)π) proximity vector
light ((0, 1); (−1, 1)π) ((0, 1); (−1, 1)π) light vector
gnd {b, g,w} {b, g,w} ground reading
n [0, 2] [0, 2] no. neighbors
V ((0, 1); (−1, 1)π) ((0, 1); (−1, 1)π) neighbors vector

Output Value–EP Value–ME Description

vk∈{l,r} (−10, 10) cm/s (−30, 30) cm/s target velocity

Period of the control cycle: 0.1 s.

M
er

ca
to

rs
e-

pu
ck

s

AGGREGATION FORAGING GRID EXPLORATION

30 cm

100 cm

Fig. 2. Experimental scenarios in AGGREGATION, FORAGING, and GRID
EXPLORATION. The workspace of the e-pucks is about one-third the size
of Mercators’ workspace. The pictures show an example of the initial
configuration at the beginning of each mission.

for e-pucks [19]—both in simulation and reality. Previous
results confirm that they can generate control software for
various missions, including aggregation, foraging, and cover-
age [8], [11]–[13], [20]. In our experiments, we consider three
missions: AGGREGATION, FORAGING, and GRID EXPLO-
RATION—see Figure 2. In AGGREGATION, robots must ag-
gregate on a black spot. In FORAGING, robots must iteratively
travel between small black spots and a larger white region. In
GRID EXPLORATION, robots must explore the environment
and continuously visit every cell of a grid. We adjust the size
of the environment according to the relative size of the robots:
the e-pucks operate in an environment that is one-third the size
of the Mercators’ one. The performance of the two swarms is
computed using the same performance measures. We produce
a total of 120 instances of control software using Chocolate
and EvoStick—ten for each platform, mission, and method.
We assess each instance once in simulation (expected per-
formance) and once with physical robots (real performance).
We conduct simulations in ARGoS3 [21]—a simulator widely
used in swarm robotics research.

III. RESULTS AND DISCUSSION

When assessed in simulation, the control software produced
by both Chocolate and EvoStick, for both e-pucks and



Chocolate-EP

Chocolate-ME

EvoStick-EP

EvoStick-ME

10 15 20 25 30 10 20 30

Simulation Reality

Average rank (the lower, the better)

Fig. 3. Comparison of control software produced by EvoStick and Choco-
late for e-pucks (EP) and Mercators (ME). We aggregate the results obtained
in the three missions using a Friedman test. For each method and platform,
we present average ranks and 95% confidence intervals. The lower, the better.

Mercators, demonstrates meaningful behavior and effectively
performs the missions. When assessed in reality, the control
software produced by Chocolate maintains satisfactory
behavior on both platforms. In contrast, control software pro-
duced by EvoStick does not typically reproduce simulation
results on either platform. The differences between simulation
and reality are known effects of the reality gap: previous
research has shown that design methods from the AutoMoDe
family are more robust to the reality gap than those based on
neuroevolution [12]–[14]. The different degree of robustness
to the reality gap between Chocolate and EvoStick had
been only reported for e-pucks. Here, we show that similar
results also apply to Mercators. Demonstrative videos are
available for download in the Supplementary material1.

To investigate the extent to which Chocolate and
EvoStick are transferable from the e-puck—the platform
for which they were originally conceived—to the Mercator, we
compare the performance of the control software they produce
for the two platforms. We aggregate the performance across
the three missions considered using a Friedman test [22]—
see Figure 3. In simulation, the swarm of e-pucks performs
better than the one of Mercators, both for Chocolate and
EvoStick. This result was expected, as the two design
methods were conceived for the e-puck and were applied to
Mercators without any adaptation. In the experiments with
the physical robots, the swarm of e-pucks performs better
than the one of Mercators when they execute control software
produced by Chocolate. On the other hand, the swarm of
Mercators performs better than the e-pucks when they execute
control software produced by EvoStick. This result was
unexpected and suggests that EvoStick, although originally
conceived for the e-pucks, is more robust to the reality gap
when adopted to design control software for Mercators. This
indicates that the effects of the reality gap are not only method-
dependent but also platform-dependent. By comparing the
relative performance of Chocolate and EvoStick, we can
conclude that, under the experimental conditions considered
in the study, Chocolate transfers better from e-pucks to
Mercators than EvoStick—see Figure 3.

We also investigate the extent to which the control software
automatically produced by Chocolate and EvoStick can
be transferred between e-pucks and Mercators. To this end,

1Supplementary material: https://iridia.ulb.ac.be/supp/IridiaSupp2023-001

Chocolate-NT

Chocolate-TT

EvoStick-NT

EvoStick-TT

20 30 40 50 60

Simulation
20 30 40 50 60

Reality

Average rank (the lower, the better)

Fig. 4. Comparison of control software produced by EvoStick and Choc-
olate when assessed on the platform for which it has been produced (NT,
for not transferred) and on the counterpart (TT, for transferred)—regardless
whether the design was performed for e-pucks or Mercators. We aggregate
the results obtained in the three missions using a Friedman test. We present
average ranks and 95% confidence intervals. The lower, the better.

we transfer the control software produced for e-pucks to
Mercators, and vice versa. We assess the control software
produced by the two methods both on the platform for which
it has been produced and on the counterpart. Also in this
case, we do this in simulation and reality. We aggregate
the performance across the three missions using a Friedman
test—see Figure 4. When assessed in simulation, the control
software produced by EvoStick performs better than the
one produced by Chocolate. After transferring the control
software, we observe that the one produced by Chocolate
performs better than the one produced by EvoStick—see
Figure 4. The performance drop caused by transferring the
control software is significantly larger for EvoStick than
for Chocolate. We observe a rank inversion between the
two design methods. It is known that EvoStick can achieve
a better performance in simulation by overfitting the design
process to the simulated model of the e-puck [12], [14].
We argue that this overfitting prevented a proper transfer
of the control software to Mercator—as it happens when
transferring control software between simulation and reality.
In the experiments with the physical robots, Chocolate and
EvoStick show a performance drop after transferring the
control software between e-pucks and Mercators. However,
the control software produced by Chocolate transfers better
than the one produced by EvoStick—see Figure 4.

These preliminary results indicate that automatic design
methods and the control software they produce can be trans-
ferred from one robot platform to another—provided that the
two have equivalent sensing and actuation capabilities. The
best results are obtained by transferring a method, that is,
by applying a method originally designed for a platform to
another one—as opposed to transferring the control software
it produces for the original platform to the other one. We will
also investigate whether protocols to predict the robustness of
design methods to the reality gap [14] can be used to predict
the transferability of control software across platforms.

USE OF AI TECHNOLOGIES IN THE WRITING PROCESS

During the preparation of this work, the authors used Ope-
nAI ChatGPT to proofread and edit for language issues and
stylistic inconsistencies—see Supplementary material. After
using this tool, the authors reviewed and edited the manuscript
as needed and take full responsibility for the content.



REFERENCES

[1] E. Şahin, “Swarm robotics: from sources of inspiration to domains of
application,” in Swarm Robotics: SAB 2004 International Workshop, ser.
Lecture Notes in Computer Science, E. Şahin and W. M. Spears, Eds.,
vol. 3342. Berlin, Germany: Springer, 2005, pp. 10–20.

[2] G. Beni, “From swarm intelligence to swarm robotics,” in Swarm
Robotics: SAB 2004 International Workshop, ser. Lecture Notes in
Computer Science, E. Şahin and W. M. Spears, Eds., vol. 3342. Berlin,
Germany: Springer, 2005, pp. 1–9.

[3] M. Dorigo, M. Birattari, and M. Brambilla, “Swarm robotics,” Scholar-
pedia, vol. 9, no. 1, p. 1463, 2014.

[4] M. Dorigo, G. Theraulaz, and V. Trianni, “Swarm robotics: past, present,
and future [point of view],” Proceedings of the IEEE, vol. 109, no. 7,
pp. 1152–1165, 2021.

[5] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm
robotics: a review from the swarm engineering perspective,” Swarm
Intelligence, vol. 7, no. 1, pp. 1–41, 2013.

[6] M. Birattari, A. Ligot, D. Bozhinoski, M. Brambilla, G. Francesca,
L. Garattoni, D. Garzón Ramos, K. Hasselmann, M. Kegeleirs, J. Kuck-
ling, F. Pagnozzi, A. Roli, M. Salman, and T. Stützle, “Automatic off-
line design of robot swarms: a manifesto,” Frontiers in Robotics and AI,
vol. 6, p. 59, 2019.

[7] V. Trianni, Evolutionary Swarm Robotics. Berlin, Germany: Springer,
2008.

[8] G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, and M. Birattari,
“AutoMoDe: a novel approach to the automatic design of control
software for robot swarms,” Swarm Intelligence, vol. 8, no. 2, pp. 89–
112, 2014.

[9] A. Ligot, J. Kuckling, D. Bozhinoski, and M. Birattari, “Automatic
modular design of robot swarms using behavior trees as a control
architecture,” PeerJ Computer Science, vol. 6, p. e314, 2020.

[10] N. Jakobi, P. Husbands, and I. Harvey, “Noise and the reality gap: the
use of simulation in evolutionary robotics,” in Advances in Artificial
Life: Third European Conference on Artificial Life, ser. Lecture Notes in
Artificial Intelligence, F. Morán, A. Moreno, J. J. Merelo, and P. Chacón,
Eds., vol. 929. Berlin, Germany: Springer, 1995, pp. 704–720.

[11] G. Francesca, M. Brambilla, A. Brutschy, L. Garattoni, R. Miletitch,
G. Podevijn, A. Reina, T. Soleymani, M. Salvaro, C. Pinciroli, F. Mascia,
V. Trianni, and M. Birattari, “AutoMoDe-Chocolate: automatic design
of control software for robot swarms,” Swarm Intelligence, vol. 9, no.
2–3, pp. 125–152, 2015.

[12] A. Ligot and M. Birattari, “Simulation-only experiments to mimic the
effects of the reality gap in the automatic design of robot swarms,”
Swarm Intelligence, vol. 14, pp. 1–24, 2020.

[13] K. Hasselmann, A. Ligot, J. Ruddick, and M. Birattari, “Empirical
assessment and comparison of neuro-evolutionary methods for the
automatic off-line design of robot swarms,” Nature Communications,
vol. 12, p. 4345, 2021.

[14] A. Ligot, “Assessing and forecasting the performance of optimization-
based design methods for robot swarms: experimental protocol &
pseudo-reality predictors.” Ph.D. dissertation, Université Libre de Brux-
elles, Brussels, Belgium, 2023.

[15] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz,
S. Magnenat, J.-C. Zufferey, D. Floreano, and A. Martinoli, “The e-
puck, a robot designed for education in engineering,” in ROBOTICA
2009: Proceedings of the 9th Conference on Autonomous Robot Systems
and Competitions, P. Gonçalves, P. Torres, and C. Alves, Eds. Castelo
Branco, Portugal: Instituto Politécnico de Castelo Branco, 2009, pp. 59–
65.

[16] L. Garattoni, G. Francesca, A. Brutschy, C. Pinciroli, and M. Birattari,
“Software infrastructure for e-puck (and TAM),” IRIDIA, Université
Libre de Bruxelles, Brussels, Belgium, Tech. Rep. TR/IRIDIA/2015-
004, 2015.

[17] M. Kegeleirs, R. Todesco, D. Garzón Ramos, G. Legarda Herranz,
and M. Birattari, “Mercator: hardware and software architecture for
experiments in swarm SLAM,” IRIDIA, Université libre de Bruxelles,
Brussels, Belgium, Tech. Rep. TR/IRIDIA/2022-012, 2022.

[18] K. Hasselmann, A. Ligot, G. Francesca, D. Garzón Ramos, M. Salman,
J. Kuckling, F. J. Mendiburu, and M. Birattari, “Reference models for
AutoMoDe,” IRIDIA, Université Libre de Bruxelles, Brussels, Belgium,
Tech. Rep. TR/IRIDIA/2018-002, 2018.

[19] M. Birattari, A. Ligot, and G. Francesca, “AutoMoDe: a modular
approach to the automatic off-line design and fine-tuning of control
software for robot swarms,” in Automated Design of Machine Learning
and Search Algorithms, ser. Natural Computing Series, N. Pillay and
R. Qu, Eds. Cham, Switzerland: Springer, 2021, pp. 73–90.

[20] G. Spaey, M. Kegeleirs, D. Garzón Ramos, and M. Birattari, “Evaluation
of alternative exploration schemes in the automatic modular design
of robot swarms,” in Artificial Intelligence and Machine Learning:
BNAIC 2019, BENELEARN 2019, ser. Communications in Computer and
Information Science, B. Bogaerts, G. Bontempi, P. Geurts, N. Harley,
B. Lebichot, T. Lenaerts, and G. Louppe, Eds. Cham, Switzerland:
Springer, 2020, vol. 1196, pp. 18–33.

[21] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla,
N. Mathews, E. Ferrante, G. A. Di Caro, F. Ducatelle, M. Birattari, L. M.
Gambardella, and M. Dorigo, “ARGoS: a modular, parallel, multi-engine
simulator for multi-robot systems,” Swarm Intelligence, vol. 6, no. 4, pp.
271–295, 2012.

[22] W. J. Conover, Practical Nonparametric Statistics, 3rd ed., ser. Wiley
Series in Probability and Statistics. New York, NY, USA: John Wiley
& Sons, 1999.


