
Accurate Dynamics Models for Agile Drone Flight:
Zero-Shot Sim2Real-Transfer of Neural Controllers

Leonard Bauersfeld, Davide Scaramuzza

Abstract— Quadrotors are extremely agile, so much in fact,
that classic first-principle-models come to their limits. Aero-
dynamic effects, while insignificant at low speeds, become the
dominant model defect during high speeds or agile maneuvers.
Battery non-idealities, such as voltage drops under high loads
significantly deteriorate the performance of the robot. Accurate
modeling is needed to design robust high-performance control
systems that enable flying close to the platform’s physical limits.
We propose a hybrid approach fusing first-principle models and
datadriven methods to model quadrotors accurately such that
we can (i) use the simulation to train neural controllers via rein-
forcement learning (RL) and zero-shot transfer them to the real-
world and (ii) verify a controller’s performance in simulation.
While advanced first-principle models such as computational
fluid dynamics or molecular dynamics simulations are able
to precisely calculate the aerodynamic forces and the battery
dynamics of a quadrotor, their computational demand makes
them unusable for RL training requiring millions of samples.
We show that by augmenting simpler models with data-driven
residual models, we can develop a simulation that is very fast
to run and yet accurately captures the vehicle’s dynamics.
The approach is validated in the real-world by comparing our
simulation with the experiments where autonomous quadrotor
flies at speeds up to 70 km/h in one the world’s largest motion
capture systems.

I. INTRODUCTION

Recently, learned controllers have become extremely pop-
ular in the mobile robotics community due to their success
in a variety of complex real-world tasks, such as legged
locomotion in challenging environments [1], underground
exploration [2] and autonomous drone racing [3]–[5]. In
all the aforementioned works, neural-network controllers
outperform their classical model-based counterparts both in
terms of performance and success rate but they require a
simulation environment to be trained in. The performance of
the trained neural controllers typically depends on the fidelity
of the training environment and a smaller sim2real gap means
that the controller can push the robot closer to its limits.
The sim2real gap can be narrowed by employing strategies
like domain randomization ensuring that the neural controller
learns to cope with a distribution of vehicle dynamics. If this
distribution is chosen sufficiently wide, the dynamics of the
physical robot will be included in the training distribution.
While recent publications show that training using a very
simple dynamics model and applying domain randomization
is viable [1], [2], [5] it suffers from two drawbacks as (i)

The authors are with the Robotics and Perception Group, Department
of Informatics, University of Zurich, and Department of Neuroinformat-
ics, University of Zurich and ETH Zurich, Switzerland (http://rpg.
ifi.uzh.ch). This work was supported by the Swiss National Science
Foundation (SNSF) through the National Centre of Competence in Re-
search (NCCR) Robotics, the European Union’s Horizon 2020 Research
and Innovation Programme under grant agreement No. 871479 (AERIAL-
CORE), and the European Research Council (ERC) under grant agreement
No. 864042 (AGILEFLIGHT).

First Principles Model

Battery Model

Residual Dynamics

State +
fprop

τprop

fres

τres

f

τ
voltage

voltage

Fig. 1. Overview over the proposed hybrid model architecture to predict
the dynamics of an agile quadcopter. A computationally lightweight first-
principles propeller model is augmented with a data-driven residual model.
To further improve the accuracy a battery model is added to account for the
time-varying battery voltage.

the learned controller is only optimal w.r.t the distribution of
dynamics and not w.r.t the actual physics of the robot and (ii)
it makes validation of the controller in simulation more diffi-
cult since we have no guarantee that the training distribution
indeed captures the true vehicle dynamics. To overcome these
difficulties we propose to increase the simulation fidelity
when simulating agile quadcopters by augmenting the simple
models used in prior works with data-driven residuals that
capture hard-to-model aerodynamic effects and non-idealities
in the propulsion system.

II. RELATED WORK

Traditionally, a rotor is assumed to produce thrust and
axial torque proportional to the square of its angular rate with
a constant coefficient [6], which is referred to hereinafter as
the simple quadratic model. Due to its simplicity and com-
putational performance, this model is used in well-known
aerial robotics simulators such as AirSim [7], Flightmare [8],
RotorS [9] and others [10]. To increase model fidelity, [11]
proposes to identify the quadrotor platform dynamics using
a gray-box model that uses a library of polynomials as basis
functions and is able to model both aerodynamic forces and
torques. This method relies on the predefined function library
and also contains discontinuities in the learned model. To
further increase the fidelity and reduce the risk of large
discontinuities, [12] uses a first-principles model and only
augments that with a learned component for the residual
force and torque terms. Inspired by these prior works, in
this short paper we examine a setting where we use a simple
first-principle model similar to [12] but augment it with a
data-driven residual component that relies on polynomials
as basis functions [11]. We follow a similar approach to
battery modeling, using a graybox battery model based on
a Thevenin equivalent circuit. Depending on the fidelity of
the model, it includes one resistor combined with zero, one
(one time constant, OTC) or two (two time constants, TTC)
capacitive networks. A review of the common OTC and TTC
models is presented in [13]. The OTC model is widely used
because of its well-established accuracy [14].

http://rpg.ifi.uzh.ch
http://rpg.ifi.uzh.ch


III. DRONE DYNAMICS SIMULATOR

A. First-principles Model
The quadrotor is assumed to be a 6 degree-of-freedom

rigid body of mass m and diagonal moment of inertia matrix
J = diag(Jx, Jy, Jz). Furthermore, the battery voltage U
dependent rotational speeds of the four propellers Ωi are
modeled as a first-order system with time constant kmot where
the commanded motor speeds Ωcmd are the input. The state
space is 17-dimensional and its dynamics can be written as:

ẋ =


ṗWB
q̇WB
v̇W
ω̇B
Ω̇

 =


vW

qWB ·
[
0 ωB/2

]>
1
m

(qWB � (fprop + fres)) + gW
J−1

(
τprop + τres − ωB × JωB

)
1

kmot

(
Ωcmd(U)−Ω(U)

)

 , (1)

where gW = [0, 0,−9.81 ms−2]> denotes earth’s gravity,
fprop, τprop are the collective force and the torque produced
by the propellers. Model-free reinforcement learning suffers
from a low sample-efficiency during training which necessi-
tates an efficient simulator that can run fast. Hence, to model
the thrust and torque produced by the i-th propeller, the
commonly used and computationally lightweight quadratic
model [7], [9], [15] is employed:

fi(Ω) =
[
0 0 cl Ω2

]>
τi(Ω) =

[
0 0 cd Ω2

]>
(2)

fprop =
∑

fi τprop =
∑

τi + rP,i × fi (3)

where cl, cd denote the lift and drag coefficient of propeller
respectively and rP.

B. Residual Model
Compared to state-of-the-art methods that leverage blade-

element-momentum theory [12], this quadratic model does
not account for aerodynamic effects, such as rotor drag or
blade flapping. This deficiency widens the sim-to-real gap
when using RL to train a controller and then deploy in
the real-world. We account for such residual aerodynamic
effects and introduce a lumped residual term fres, τres on
the forces and torques respectively. We use a polynomial
graybox model [12], [16] for the residual terms as this is
computationally lightweight. The polynomial basis functions
are a linear and quadratic terms of the velocity components
in bodyframe, the squared average motor speed and all
interaction terms between the terms. The coefficients of the
polynomial model are fitted from measurements from real-
world flights in a motion-capture system similar to [12].

C. Battery Model
Battery voltage models leverage Thevenin equivalent cir-

cuits to predict the battery voltage. Fig. 2 shows the equiv-
alent circuit diagram for the used OTC (one time constant)
battery model. The voltage of the voltage source U0 corre-
sponds to the open-circuit voltage of the battery. When a
possibly time-varying load is connected to the circuit and
a current Iload(t) flows, the voltage Ubat(t) at the output
terminals can be calculated as [17]

U̇cap(t) =
−Ucap(t)

R1 · C1
+
Iload(t)

C1
, (4)

U0

+

-

R0 R1

C1

R
load

+

-

Ubat

Iload

Fig. 2. Thevenin equivalent circuit for the one-time-constant (OTC) battery
model. The load does not need to be static but could, for example, be a
multirotor aerial vehicle.

Ubat(t) = U0(t) − Ucap(t) −R0(t)Iload(t) , (5)

where R0(t), R1, C1 are defined as shown in Fig 2. The
reader is reffered to our prior work [18] for further detail.

IV. NEURAL CONTROLLER

In this work, the task of fast and agile quadrotor flight
is defined as navigating through a sequence of drone racing
gates as fast as possible. Or, to rephrase this using broader
terms: Navigate through a sequence of predefined waypoints
gi (see Fig. 3) in minimum time and pass each waypoint
within an l∞ distance less then the dimension of a racing
gate. To accomplish this, the control policy directly maps
an observation ot and a conditioning input ζt to an action
(control command) at. The control policies are trained
using model-free reinforcement learning (PPO [19]) purely
in simulation.

1) Observation and Action Space: At each timestep t the
policy has access to an observation ot from the environment
which contains (i) the current robot state, (ii) the relative
position to the next waypoint to be passed, Specifically, the
state consists of the vehicle position pWB, its velocity in
body-frame vB and its attitude. To avoid discontinuities the
latter is represented by a rotation matrix instead of directly
using the quaternion qWB [20]. The control command at

consists of a desired collective mass-normalized thrust c
and a bodyrate setpoint ωB,ref. Those commands are then
tracked by a low-level controller, which finally controls the
motors. In contrast to more abstract control modalities such
as linear velocity references, operating on collective thrust
and bodyrates has been shown to be well suited for agile
learned quadrotor control [21].

2) Reward Function: We use a dense shaped reward to
encode the task of high-speed flight through a set of pre-
defined waypoints. The reward rt at time step t is given by

rt =rprog
t + rperc

t (ζ) − rtwr
t (ζ) − rcrash

t , (6)

where rprog rewards progress towards the next gate to be
passed [5], rperc(ζ) encodes perception awareness by adjust-
ing the vehicle’s attitude such that the optical axis of its
camera points towards the next gate’s center with an optional

Fig. 3. We evaluate neural policy on the task of fast waypoint flight on a
challenging track spanning an area of 12 m × 16 m.



0 2 4 6
0

5

10

15

20

Time [s]

D
ro

ne
Sp

ee
d

[m
/s

]

0 2 4 6
0

0.2

0.4

Time [s]

Si
m

2R
ea

l
G

ap
[m

]

Fig. 4. The left plot shows the velocity of the quadcopter along the track.
The right plot shows the positional difference between a simulated rollout
and the real-world experiment.

user-specified offset, rtwr(ζ) is a penalty for violating the
user-specified maximum thrust-to-weight ratio, and rcrash is
a binary penalty that is only active when colliding with a
gate or when the platform leaves a pre-defined bounding box,
which also ends the episode.

Progress, perception, thrust-to-weight, and collision re-
ward components are formulated as follows:

rprog
t = λ1 (dGate(t− 1) − dGate(t))

rperc
t (ζ) = λ2 exp

(
λ3 · δcam(ζ)4

)
(7)

rtwr
t (ζ) = max(λ4 exp (λ5(ccmd − ctwr(ζ)) / cmax) − 1, 0)

rcrash
t =

{
−5.0, if pz < 0 or in collision with gate.
0, otherwise

,

where dGate(t) denotes the distance from the quadrotor’s
center of mass to the center of the next gate, δcam(ζ) is
the angle between the optical axis of the camera and the
direction towards the center of the next gate. The parameters
ccmd, ctwr(ζ) and cmax are the commanded mass normal-
ized thrust, the current user-specified maximum allowable
mass normalized thrust and the maximum mass normalized
thrust physically available for the quadrotor, respectively.
The hyperparameters λ1, λ2, λ3, λ4, λ5 trade-off objectives
regarding perception awareness and thrust-to-weight ratio
constraints against progress objectives.

3) Policy Training: All control policies are trained using
Proximal Policy Optimization (PPO) [19]. PPO has been
shown to achieve state-of-the-art performance on a set of
continuous control tasks and is well suited for learning
problems where interaction with the environment is fast. Data
collection is performed by simulating 100 agents in parallel
using TensorFlow Agents [22]. At each environment reset,
every agent is initialized in a random gate on the track layout
with bounded perturbation around a state previously observed
when passing the respective gate.

V. EXPERIMENTAL RESULTS

The quadcopter flies at speeds up to 19 m/s (see Fig. 4)
and experiences accelerations up to 4.5 g. To validate the
accuracy of our model, we deploy the policy zero-shot in
the real world in one of the worlds largest motion capture
systems. In Fig. 4 (right) we show the distance between a
simulated rollout and a real-world rollout. On average the
two trajectories are 0.13 m apart, highlighting how accurate
the dynamics model is. In our prior work [12] we achieved
a similar accuracy only at lower speeds and had to rely on
a neural network to capture the residual dynamics. The high

simulation accuracy is enabled by the inclusion of a residual
model and an accurate battery model.

REFERENCES

[1] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
robotics, vol. 5, no. 47, 2020.

[2] M. Tranzatto, T. Miki, M. Dharmadhikari, L. Bernreiter, M. Kulkarni,
F. Mascarich, O. Andersson, S. Khattak, M. Hutter, R. Siegwart, and
K. Alexis, “Cerberus in the darpa subterranean challenge,” Science
Robotics, vol. 7, no. 66, p. eabp9742, 2022.

[3] P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski, M. Gehrig,
M. Muglikar, and D. Scaramuzza, “Alphapilot: Autonomous drone
racing,” Auton. Robots, vol. 46, no. 1, p. 307–320, 2022.

[4] E. Ackerman, “Autonomous Drones Challenge Human Champions in
First ”Fair” Race,” IEEE Spectrum.

[5] Y. Song, M. Steinweg, E. Kaufmann, and D. Scaramuzza, “Au-
tonomous drone racing with deep reinforcement learning,” IEEE/RSJ
Int. Conf. Intell. Robot. Syst. (IROS), 2021.

[6] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles:
Modeling, estimation, and control of quadrotor,” IEEE Robotics and
Automation magazine, vol. 19, no. 3, pp. 20–32, 2012.

[7] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity
visual and physical simulation for autonomous vehicles,” in Field and
Service Robot., Springer, 2018.

[8] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza,
“Flightmare: A flexible quadrotor simulator,” 2020.

[9] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “Rotors—a modular
gazebo mav simulator framework,” in Robot Operating System (ROS),
Springer, 2016.

[10] J. Meyer, A. Sendobry, S. Kohlbrecher, U. Klingauf, and O. Von Stryk,
“Comprehensive simulation of quadrotor uavs using ros and gazebo,”
in International conference on simulation, modeling, and programming
for autonomous robots, pp. 400–411, Springer, 2012.

[11] S. Sun, C. C. de Visser, and Q. Chu, “Quadrotor gray-box model
identification from high-speed flight data,” Journal of Aircraft, vol. 56,
no. 2, pp. 645–661, 2019.

[12] L. Bauersfeld, E. Kaufmann, P. Foehn, S. Sun, and D. Scaramuzza,
“Neurobem: Hybrid aerodynamic quadrotor model,” in Proceedings of
Robotics: Science and Systems, 2021.

[13] X. Zhang, W. Zhang, and G. Lei, “A review of li-ion battery equivalent
circuit models,” Transactions on Electrical and Electronic Materials,
2016.

[14] L. Zhang, S. Wang, D.-I. Stroe, C. Zou, C. Fernandez, and C. Yu, “An
accurate time constant parameter determination method for the varying
condition equivalent circuit model of lithium batteries,” Energies,
2020.

[15] P. Foehn, E. Kaufmann, A. Romero, R. Penicka, S. Sun, L. Bauersfeld,
T. Laengle, G. Cioffi, Y. Song, A. Loquercio, and D. Scaramuzza, “Ag-
ilicious: Open-source and open-hardware agile quadrotor for vision-
based flight,” Science Robotics, vol. 7, no. 67, 2022.

[16] S. Sun, C. C. de Visser, and Q. Chu, “Quadrotor gray-box model
identification from high-speed flight data,” Journal of Aircraft, vol. 56,
no. 2, pp. 645–661, 2019.

[17] A. Rahmoun and H. Biechl, “Modelling of li-ion batteries using
equivalent circuit diagrams,” Przeglad Elektrotechniczny, 2012.

[18] L. Bauersfeld and D. Scaramuzza, “Range, endurance, and optimal
speed estimates for multicopters,” IEEE Robotics and Automation
Letters, vol. 7, no. 2, pp. 2953–2960, 2022.

[19] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv e-prints, 2017.

[20] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li, “On the continuity
of rotation representations in neural networks,” in IEEE Int. Conf.
Comput. Vis. Pattern Recog. (CVPR), 2019.

[21] E. Kaufmann, L. Bauersfeld, and D. Scaramuzza, “A benchmark
comparison of learned control policies for agile quadrotor flight,” in
2022 International Conference on Robotics and Automation (ICRA),
IEEE, 2022.

[22] S. Guadarrama, A. Korattikara, O. Ramirez, P. Castro, E. Holly,
S. Fishman, K. Wang, E. Gonina, N. Wu, E. Kokiopoulou, L. Sbaiz,
J. Smith, G. Bartók, J. Berent, C. Harris, V. Vanhoucke, and E. Brevdo,
“TF-Agents: A library for reinforcement learning in tensorflow.”
https://github.com/tensorflow/agents, 2018. [Online;
accessed 25-June-2019].

https://github.com/tensorflow/agents

	Introduction
	Related Work
	Drone Dynamics Simulator
	First-principles Model
	Residual Model
	Battery Model

	Neural Controller
	Observation and Action Space
	Reward Function
	Policy Training


	Experimental Results
	References

